

TQF 3 Course Specifications Section 1 General Information

1. Course code and course title

Thai ICCS७	oc โครงสร้างข้อมูลและการกำหนดรูปแบบลักษณะข้อมูล
English ICCS2	208 Data Structures and Abstractions
2. Number of credits 4 (3-2	-7) (Lecture/Lab/Self-study)
3. Program and type of subje	ect
3.1 Program	Bachelor of Science (Computer Science)
3.2 Type of Subject	Required course
4. Course Coordinator and C	Course Lecturer
4.1 Course Coor	dinator Kanat TANGWONGSAN, PhD
4.2 Course Lectu	irers Petch SAJJACHOLAPUNT, PhD
5. Trimester/ Year of Study	
5.1 Trimester Once	every academic year
5.2 Course Capacity	Approximately 30 students
6. Pre-requisite(s)	ICMA101 Introduction to Computer Programming or
	ICPY221 Computer Programming for Physics
7. Co-requisite(s)	ICCS 206 Discrete Mathematics
8. Venue of Study	Mahidol University, Salaya Campus

Section 2 Goals and Objectives

1. Course Goals

To equip students with the skills and tools to confidently write efficient and correct programs, and to provide them with further practice in problem solving.

- 2. Objectives of Course Development/Revision
 - 2.1 Course Objectives

This course is designed to fulfill the requirements of TQF1 and the recommendations from the Association for Computing Machinery (ACM).

- 2.2 Course-level Learning Outcomes: CLOs By the end of the course, students will be able to (CLOs)
- CLO1 Recognize common forms of abstractions in problem solving and object-oriented programming.
- CLO2 Design and implement a well-structured Java program using the industry standard toolchain.
- CLO3 Use fundamental data structures and algorithms as a basis for implementing an abstract data type and associated algorithms to solve a given problem.
- CLO4 Mathematically analyze and empirically evaluate a simple program in terms of space and time.

Section 3 Course Management

1. Course Description

Principles of object-oriented design and problem solving; Objects and classes; Encapsulation, abstraction, and information hiding; Inheritance and polymorphism; Unit testing; Abstract data types and data structures, including stacks, queues, linked lists, hash tables, ordered dictionaries, binary search trees, priority queues, and heaps; Upper bound efficiency analysis using Big-O; Elements of Java programming; Use of an integrated development environment

หลักการออกแบบเชิงวัตถุและการแก้ปัญหา วัตถุและคลาส การห่อหุ้ม การกำหนดสาระสำคัญ และการซ่อนข้อมูล การรับทอดและภาวะที่มีหลายรูปแบบ การทดสอบหน่วย แบบชนิดข้อมูลนามธรรมและโครงสร้างข้อมูล รวมไปถึง กองซ้อน คิวรายการโยง ตารางแฮช ดิกชั่นนารีแบบเรียงลำดับ ต้นไม้ค้นหาแบบทวิภาค คิวแบบมีสิทธิพิเศษ และฮีป การหาขอบบนประสิทธิภาพโดยใช้บิกโอ องค์ประกอบแห่งภาษาจาวา การใช้สภาพแวดล้อมเพื่อการ พัฒนาแบบเบ็ดเสร็จ (ไอดีอี)

ιI			
	Lecture (Hour(s))	Laboratory/field trip/internship (Hour(s))	Self-study (Hour(s))
	36	24	84

2. Credit hours per trimester

3. Number of hours that the lecturer provides individual counseling and guidance.

1 hour/week

Section 4 Development of Students' Learning Outcome

1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)

By the end of the course, students will be able to:

- CLO1 Recognize common forms of abstractions in problem solving and object-oriented programming.
- CLO2 Design and implement a well-structured Java program using the industry standard toolchain.
- CLO3 Use fundamental data structures and algorithms as a basis for implementing an abstract data type and associated algorithms to solve a given problem.
- CLO4 Mathematically analyze and empirically evaluate a simple program in terms of space and time.
- 2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

ICCS227	Teaching methods	Evaluation Methods
CLO1	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination
CLO2	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination
CLO3	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination
CLO4	Reading assignment, interactive lecture, case	Quiz, Homework,
	studies, quiz, group activities, group discussion	Examination

1. Teaching plan

Section 5 Teaching and Evaluation Plans

		Number of Hours			
Week	Topic	Lecture Hours	Lab/Field Trip/Intern ship Hours	Teaching Activities/ Media	Lecturer
1	 Course Overview, Motivating Examples, Java Essentials 	3	2		
2	 Classes and References LinkedList: Nested Classes, Sentinel Nodes 	3	2		
3	 ArrayList: Arrays, Resizing, Queue & Stack Discipline Class Mechanism: Implements, Extends 	3	2		
4	 Higher Order Functions and Subtyping Build Tool & Some Java Fun 	3	2	Reading	Vanat
5	 Exceptions, Iterators, and Iterables Objects and Inductive Thinking 	3	2	assignment, interactive lecture, quiz,	TANGWO NGSAN, PhD
6	Review and Assessment Week	3	2	group	Petch
7	 Performance Characterization: Asymptotics I Performance Characterization: Asymptotics II 	3	2	studies, group discussion	LAPUNT, PhD
8	Disjoint SetsSorting	3	2		
9	 Priority Queues and Heaps Trees and Binary Trees	3	2		
10	Maps and Binary Search TreesGraph Traversal	3	2		
11	Minimum Spanning TreesRandomness in Algorithms	3	2		
12	Hashing and Hash TablesTerm Review	3	2		
	Total	36	24		

- 2. Plan for Assessing Course Learning Outcomes
 - 2.1 Assessing and Evaluating Learning Achievement
 - a. Formative Assessment
 - Worksheet
 - Class discussion
 - b. Summative Assessment

(1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods	Assess Rat (Percer	Assessment Ratio (Percentage)	
CLO1 Recognize common forms of abstractions in problem solving and	Homework & Quiz	5	25	
object-oriented programming.	Examination	20		
CLO2 Design and implement a well-structured Java program using the	Homework & Quiz	5	25	
industry standard toolchain.	Examination	20		
CLO3 Use fundamental data structures and algorithms as a basis for implementing an	Homework & Quiz	5	25	
abstract data type and associated algorithms to solve a given problem.	Examination	20	25	
CLO4 Mathematically analyze and empirically evaluate a simple program in terms	Homework & Quiz	5	25	
of space and time.	Examination	20		
			100	

(2) Grading System

Grade	Achievement	Final Score (% Range)	GPA
А	Excellent	90-100	4.0
, B+	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very Poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows to have re-examination)

N/A - (Not applicable with MUIC)

3. Student Appeals

N/A

Section 6 Teaching Materials and Resources

- 1. Textbooks and/or other documents/materials
 - *None; Lecture notes will be provided by the lecturers.*
- 2. Recommended textbooks and/or other documents/materials

Selected readings from pertinent scientific journals and textbooks or video clips, as posted on the course's e-learning site

3. Other Resources (If any)

N/A

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for evaluating course effectiveness by students
 - 1.1 Student feedback of instructors, teaching methods and materials, and course content through MUIC student evaluation forms
- 2. Strategies for evaluating teaching methods
 - 2.1 Evaluation of effectiveness based on student evaluation scores and comments
 - 2.2 Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods
 - 3.1 Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-on-one and/or group meetings as specified by MUIC guidelines
- 4. Verification process for evaluating students' standard achievement outcomes in the course
 - 4.1 Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and plan for improving the effectiveness of the course
 - 5.1 Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Courses and General Education courses

Table 1 The relationship between course and Program Learning Outcomes (PLOs)

	Program Learning Outcomes (PLOs)						
	PLO1	PLO2	PLO3	PLO4	PLO5	PLO6	
(ICCS208)	R		Ι		R	Ι	

<u>Table 2</u> The relationship between CLOs and Program LOs (Number in table = Sub LOs)

ICCS208		Learning Outcomes in the Computer Science Program					
	1	2	3	4	5	6	
CLO1 Recognize common forms of	1.1		3.2				
abstractions in problem solving and	1.2						
object-oriented programming.							
CLO2 Design and implement a					51	6.1	
well-structured Java program using the							
industry standard toolchain.							
CLO3 Use fundamental data structures					5.1		
and algorithms as a basis for					5.4		
implementing an abstract data type and							
associated algorithms to solve a given							
problem.							
CLO4 Mathematically analyze and					5.2		
empirically evaluate a simple program in							
terms of space and time.							

Table 3 The description of Program LC	Os and Sub LOs of the course
CS LOs	Sub LOs
PLO1 Demonstrate proficiency in	1.1 Understand the format of communication in
scientific communication.	computer science.
	1.2 Communicate inchoate ideas to others for further
	development and refinement.
	1.3 Describe computing concepts to members of the
	community with accuracy and clarity.
PLO2 Carry out work with scientific	2.1 Recognize the concepts of intellectual property,
integrity and professionalism.	copyright licenses, and law pertaining to information
	technology.
	2.2 Provide ethical reasoning and awareness of issues
	surrounding bias, fabrication, falsification, plagiarism,
	outside interference, censorship, and information
	privacy.
	2.3 Demonstrate good time management,
	self-regulation, autonomy, and professional code of
	conduct of the discipline.
PLO3 Appraise scientific	3.1 Apply quantitative reasoning using mathematical
information critically.	methods and scientific facts, taking into consideration
	multiple perspectives.
	3.2 Provide a succinct description of the issue (i.e., a
	problem, a question, or a hypothesis), separating facts
	2 2 Differentiate source, validity, objectives, key
	arguments and consequences of a piece information
	3.4 Create a response to the issue by synthesizing
	collected information critical to the assessment
PLO4 Use a teamwork mindset in	
the context of computing	
PLO5 Execute common computing	5.1 Carry out the process of converting a
methodologies appropriate for a	process/algorithm to a machine-executable program
problem scenario.	5.2 Use suitable techniques for correctness and cost
r	analysis of computer programs.
	5.3 Deconstruct a computer system to reveal its
	structure, components, and process of construction.
	5.4 Select common computing techniques (e.g.,
	standard algorithms, data structures, design patterns,
	programing style, and computing paradigms)
	appropriate for a given problem scenario.
PLO6 Formulate computational	6.1 Model a given problem using suitable
solutions to novel situations	abstractions, including problem decomposition, in the
grounded on the foundation of	context of computing.
computer science.	6.2 Compare the relative strengths and weaknesses
	among multiple designs or implementations.

1000200		Selence Brinsie
CS LOs	Sub LOs	
	6.3 Assess the feasibility and efficacy of a computational solution based on its design implementation.	ı n and
	6.4 Devise computational solutions to nov using knowledge and experience in comp	vel situations uter science.