

TQF 3 Course Specifications

Section 1 General Information

1. Course code and course title

Thai ICPY101 Physics I English ICPY101 ฟิสิกส์ ๑

- 2. Number of credits 4 (4-0-8)
- 3. Program and type of subject
 - 3.1 Program <u>Undergraduate Degree (International Program)</u>
 - 3.2 Type of Subject General Education
- 4. Course Coordinator and Course Lecturer
 - 4.1 Course Coordinator Tara Chalermsongsak
 - 4.2 Course Lecturer Tara Chalermsongsak
- 5. Trimester/ Year of Study
 - 5.1 Trimester All trimesters (including summer session)
 - 5.2 Course Capacity Approximately 30 students.
- 6. Pre-requisite N/A
 7. Co-requisites N/A
- 8. Venue of Study Mahidol University, Salaya campus

Section 2 Goals and Objectives

1. Course Goals

Students should be able to

- 1. Understand of the fundamental principles of physics and its applications with emphasis on Newtonian mechanics and fluid mechanics.
- 2. Solve basic problems using fundamental physics equations.
- 3. Apply fundamental principles of these fields of study to new situations
- 2. Objectives of Course Development/Revision
 - 2.1 Course Objectives
 - 1. Introduce how knowledge in Physics are relevant in daily life, and how it can improve our scientific knowledge.
 - 2. Learn about basic Physics concepts.
 - 2.2 Course-level Learning Outcomes: CLOs

By the end of the course, students will be able to (CLOs)

- 1. CLO1: Perform order of magnitude estimation.
- 2. CLO2: Apply motion with constant acceleration to problems.
- 3. CLO3: Apply Newton's law to problems.
- 4. CLO4: Apply conservation of energy to problems.
- 5. CLO5: Apply conservation of linear momentum to problems.
- 6. CLO6: Apply the principles of circular motion to problems.

- 7. CLO7: Apply the principle of static equilibrium to problems.
- 8. CLO8: Apply the principle of fluid dynamics to problems.

Section 3 Course Management

1. Course Description

(Thai) การวัด หน่วยและระนาบต่าง ๆ เวกเตอร์ การเคลื่อนที่ กฎของนิวตันเรื่องการเคลื่อนที่ งาน พลังงาน ศักย์ โมเมนตัมเชิงเส้น และกฎของการอนุรักษ์พลังงานและโมเมนตัม การเคลื่อนที่แบบหมุน สมดุล กลศาสตร์ ของไหล

(English) Measurement, units and dimensions, vectors, description of motion, Newton's Laws of Motion, work kinetic energy theorem, potential energy, conservation of energy, linear momentum and it's Law of the Conservation, Rotational Motion, Static equilibrium and Fluid mechanics.

2. Credit hours per trimester

iouis per uninester		
Lecture	Laboratory/field	Self-study
(Hour(s))	trip/internship	(Hour(s))
	(Hour(s))	
48	0	96

3. Number of hours that the lecturer provides individual counseling and guidance.

2 hour/week

Section 4 Development of Students' Learning Outcome

1. Short summary on the knowledge or skills that the course intends to develop in students (CLOs)

By the end of the course, students will be able to

- 1. CLO1: Perform order of magnitude estimation.
- 2. CLO2: Apply the principle of motion with constant acceleration to problems.
- 3. CLO3: Apply Newton's law to problems.
- 4. CLO4: Apply the principle of conservation of energy to problems.
- 5. CLO5: Apply the principle of conservation of linear momentum to problems.
- 6. CLO6: Apply the principles of circular motion to problems.
- 7. CLO7: Apply the principle of static equilibrium to problems.
- 8. CLO8: Apply the principle of fluid dynamics to problems.
- 9. CLO9: Describe everyday problem quantitatively using fundamental principles.

2. Teaching methods for developing the knowledge or skills specified in item 1 and evaluation methods of the course learning outcomes

Course CLO	Teaching methods	Evaluation Methods
CLO 1	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO2	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO3	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO4	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO5	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO6	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO7	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO8	Lecture, class discussion	Quiz, Written assignment, written
		examination
CLO9	Lecture, class discussion	Quiz, Written assignment, written
		examination

Section 5 Teaching and Evaluation Plans
1. Teaching plan (see teaching plan addendum at the end of the document)

		Numbe	er of Hours		
	Topic		Lab/	Teaching	Lecturer
Week		Lecture	Field Trip/	Activities/	
		Hours	Internship	Media	
			Hours		
1	Unit and Measurement.	4	0		
2	Motion in 1 Dimension	4	0		
3	Vector.	4	0	Lecture, real-	
4	Projectile Motions.	4	0	life examples,	
5	Newton's Law	4	0	small-group	
6	Work	4	0	discussion,	Tara C.
7	Energy	4	0	class	Tala C.
8	Momentum	4	0	discussion,	
9	Rotational Motion	4	0	hands on	
10	Static Equilibrium	4	0	demonstration.	
11	Fluid Mechanics	4	0		
12	Review	4	0		
	Total	48	0		

General Education Course Course Title: Physics I Course Code ICPY 101

- 2. Plan for Assessing Course Learning Outcomes
 - 2.1 Assessing and Evaluating Learning Achievement
 - a. Formative Assessment
 - 1. Class discussion
 - 2. Reflective question
 - 3. In-class examples
 - b. Summative Assessment
 - (1) Tools and Percentage Weight in Assessment and Evaluation

Learning Outcomes	Assessment Methods		ent Ratio
CLO1: Perform order of magnitude estimation.	Exam	4	5
	Quiz and assignment	1	
CLO2: Apply the principle of motion with	Exam	8	10
constant acceleration to problems	Quiz and assignment	2	
CLO3: Apply Newton's law to problems.	Exam	8	10
	Quiz and assignment	2	
CLO4: Apply the principle of conservation of	Exam	8	10
energy to problems.	Quiz and assignment	2	
CLO5: Apply the principle of conservation of	Exam	8	10
linear momentum to problems.	Quiz and assignment	2	
CLO6: Apply the principles of circular motion to	Exam	8	10
problems.	Quiz and assignment	2	
CLO7: Apply the principle of static equilibrium to	Exam	8	10
problems.	Quiz and assignment	2	
CLO8: Apply the principle of fluid dynamics to	Exam	8	10
problems.	Quiz and assignment	2	
CLO9: Describe everyday problems quantitatively	Exam	12	15
using fundamental principles.	Quiz and assignment	3	

Undergraduate Program Mahidol University International College Science Division

Total			100
-------	--	--	-----

(2) Grading System

Grade	Achievement	Final Score (% range)	GPA
A	Excellent	90-100	4.0
B+	Very good	85-89	3.5
В	Good	80-84	3.0
C+	Fairly good	75-79	2.5
С	Fair	70-74	2.0
D+	Poor	65-69	1.5
D	Very poor	60-64	1.0
F	Fail	Less than 60	0.0

(3) Re-examination (If course lecturer allows to have re-examination) N/A - (Not applicable with MUIC)

3. Student Appeals

N/A

Section 6 Teaching Materials and Resources

- 1. Textbooks and/or other documents/materials
 - a. Serway, and Jewette, Physics for Scientist and Engineer, Brooks Cole.
 - b. Halliday, Resnick, Walker, Fundamentals of Physics, Wiley
- 2. Recommended textbooks and/or other documents/materials

As posted on the course's e-learning site

3. Other Resources (If any)

As posted on the course's e-learning site

Section 7 Evaluation and Improvement of Course Management

- 1. Strategies for effective course evaluation by students
 - 1.1. Discussion between course instructor and students
 - 1.2. Questionnaire from students.
- 2. Evaluation strategies in teaching methods
 - 2.1. Evaluation of effectiveness based on student evaluation scores and comments

Undergraduate Program Mahidol University International College Science Division

- 2.2. Evaluation through peer observations by co-instructor or other Division faculty
- 3. Improvement of teaching methods
 - 3.1. Adjustments based on student feedback, personal observations, comments from peer observations and discussions with supervisor and/or other Division faculty in one-on-one and/or group meetings as specified by MUIC guidelines.
- 4. Verification of students' learning outcomes.
 - 4.1. Verification through student performance on assessments based on MUIC/Division standards
- 5. Review and improvement for better outcome
 - 5.1. Course instructors (and coordinator/supervisor) will meet to discuss results of student evaluations and student performance based on learning outcomes in order to identify point for improvement
 - 5.2 Strategy for improvement set according to MUIC/Division guidelines

Appendix Alignment between Course learning outcomes and Program learning outcome

Table 1. The relationship between course and Program Learning Outcomes (PLOs)

Statistical Mechanics	Program Learning Outcomes (PLOs)					
	PLO1	PLO2	PLO3	PLO4	PLO5	
ICPY 101	I I					

Table 2 The relationship between CLOs and Program LOs (Number in table = sub Los)

CLOs	Physics Program's Learning Outcomes				
	PLO1	PLO2	PLO3	PLO4	PLO5
CLO1: Perform order of magnitude		2.1, 2.2			
estimation.					
CLO2: Apply the principle of motion	1.1				
with constant acceleration to problems					
CLO3: Apply Newton's law to problems.	1.1				
CLO4: Apply the principle of conservation of energy to problems.	1.1				

Settli QUA IL

General Education Course Course Title: Physics I Course Code ICPY 101 Undergraduate Program Mahidol University International College Science Division

CLO5: Apply the principle of conservation of linear momentum to problems.	1.1		
CLO6: Apply the principles of circular	1.1		
motion to problems.	1.1		
CLO7: Apply the principle of static	1.1		
equilibrium to problems.			
CLO8: Apply the principle of fluid	1.1		
dynamics to problems.			
CLO9: Describe everyday problems	1.1		
quantitatively using fundamental			
principles.			

Table 3. Description of Program Los and Sub Los of the program

Table 3. Description of Program Los and Sub	
LOs	SUB LOs
1. Apply quantitative skills both analytical and computational to solve physics problems in various subject.	 Applying Classical Mechanics knowledge to solve relevant problems Explaining motion and behavior of small object i.e. electrons. Using Electro-Magneto static to solve problems Explaining wave and oscillations phenomena. Solving Thermodynamics Problems. Understand Lorentz transformation for velocity, length, time, energy and momentum.
2) Appraise Physics information critically	 Do order of magnitude estimation for daily life situations. Analyze relevant data in a meaningful and effective way. Critique and discuss on contemporary research publication. Integrate knowledge from other scientific disciplines to evaluate the research questions.
3) Demonstrate proficiency in oral and written communication of scientific concepts	 Be able to analyze data and display result in lab reports appropriately Demonstrate proficiency in oral presentation.
4) Apply scientific integrity and professionalism.	Report experimental result and explain the discrepancy in the result sincerely and scientifically.

Undergraduate Program Mahidol University International College Science Division

	 Execute experimental work using robust techniques Work as a team with professional attitude.
5) Conduct research or experiment to answer Physics problems quantitatively.	 Apply numerical method to solve scientific problems Research or do experiment to answer a scientific problem Innovate product that generates a solution for a problem.

1. Lesson Plan (Addendum)

		Number	of hours	Online	On-	Instructors	Note
Class	Topic/Details	Lecture	Lab		Campus		
		sessions	sessions	363310113	Campus		
1	Tue 10.00-11.50	2				Tara C.	
	Units			\checkmark			
2	Thu 10.00-11.50	2		√		Tara C.	
	Order of Magnitude						
	approximation						
3	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Linear motion						
4	Thu 10.00-11.50	2		\checkmark		Tara C.	
	acceleration						
5	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Vectors review 1						
6	Thu 10.00-11.50	2		\checkmark		Tara C.	
	Vectors review 2						
7	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Projectile motion						
8	Thu 10.00-11.50	2		\checkmark		Tara C.	
	Projectile motion (2)						
9	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Newton's Law						
10	Thu 10.00-11.50	2		\checkmark		Tara C.	
	Newton's Law (2)						
11	Tue 10.00-11.50	2		✓		Tara C.	
	Work						
12	Thu 10.00-11.50	2		✓		Tara C.	
	Work (2)						
13	Tue 10.00-11.50	2		\checkmark		Tara C.	

Undergraduate Program Mahidol University International College Science Division

		Number of hours		Online	On-	Instructors	Note
Class	Topic/Details	Lecture	Lab		Campus		
		sessions	sessions	303310113	cumpus		
	Energy						
14	Thu 10.00-11.50	2		\checkmark		Tara C.	
	Energy (2)						
15	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Momentum						
16	Thu 10.00-11.50	2		\checkmark		Tara C.	
	Momentum (2)						
17	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Rotational motion						
18	Thu 10.00-11.50	2		\checkmark		Tara C.	
	Rotational motion (2)						
19	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Static Equilibrium						
20		2		✓		Tara C.	
	Thu 10.00-11.50						
	Static equilibrium (2)						
21	Tue 10.00-11.50	2		\checkmark		Tara C.	
	Fluid Mechanics						
22	Thu 10.00-11.50	2		✓		Tara C.	
	Fluid Mechanics (2)						
23	Tue 10.00-11.50	2		✓		Tara C.	
	Review (1)						
24	Thu 10.00-11.50	2		✓		Tara C.	
	Review (2)						
	Total	48	0				