FACULTY OF ENGINEERING, SCIENCE AND THE BUILT ENVIRONMENT

Unit title:	Advanced Structural Analysis	
Unit number:	BCE/M/414	
Unit level:	М	
Unit value:	1.0	
Unit co-ordinator:	M H Datoo	
Contact time:	Lectures	30 hours
	Tutorials/Laboratory	30 hours
Private study time:	90 hours	
Unit pre-requisites:	BCE/3/129 or equivalent	

SHORT DESCRIPTION

This unit is offered as a core on the Structural Design pathway of the Civil Engineering programme. The unit covers three main areas of study: structural and stress analyses of thin walled beams subjected to a combination of load systems, finite element modelling of thin walled structures using shell elements, and advanced structural/stress analysis. A hand-on approach is sued for the finite element modelling exercises.

AIMS

To acquaint the student with linear elastic analysis of thin-walled section beams. Practical introduction to finite element modelling techniques will be performed. Also, it is aimed to introduce the student to elastic plate theory and three-dimensional stress analysis.

LEARNING OUTCOMES

The student should be able to:

- distinguish between thin walled and thick-walled sections
- calculate section properties of thin walled sections
- understand the principles behind the stress calculations for thin walled beams
- calculate the bending stress on thin walled symmetric and unsymmetric section
- appreciate the significance of the section shear centre
- determine shear stresses due to vertical and horizontal shear forces on thin walled sections
- distinguish between free torsion, restrained torsion and torsion-bending loading cases
- calculate the warping, shear and direct stresses associated with torsion problems
- understand and apply the principles of multi-cell section problems
- understand and apply the theory elastic plates for the determination of moments and stresses in rectangular plates with various support conditions
- model a beam of thin walled sections subjected to a loading, using the finite element technique, and interpret the displacements, forces and stresses output

TEACHING AND LEARNING PATTERN

Lectures and tutorials supplemented by printed handouts, worked solutions to tutorials and past examination questions. The lectures are complemented by supervised computing sessions.

INDICATIVE CONTENT

Section properties

Idealisation and calculation of section properties of thin-walled sections.

Bending theory

Symmetric and unsymmetric bending of thin-walled open and closed section beams.

Shear loads

Shear flow distribution in thin-walled open and single-cell closed section beams subjected to shear loads. Shear centre of open sections.

Torsion

The St Tenant torsion theory for thin-walled open sections, and Bredt-Batho torsion theory for single-cell closed sections. Torsional stiffness and warping of open and single-cell closed sections.

Torsion of multi-cell beams

Shear flows and torsional stiffness of thin-walled multi-cell closed sections subjected to torsion.

Torsion-bending of open sections

Torsion-bending behaviour of thin-walled open section beams due to a warping restraint. Torsion-bending constant and axial constraint direct stress.

Bending of thin rectangular plates

The governing differential equation of a thin rectangular plate. Boundary conditions. Navier's and Levy's method of analyses.

Three-dimensional stresses and strains

Three-dimensional stress and strain transformations. Direction cosines. Principal stresses and strains. Maximum shear stress.

Finite element modelling

Hands-on case studies to illustrate following features: Choice of elements, input data preparation, axes system, load application, boundary restraints, mesh density, convergence tests, element topology, aspect ratios, equilibrium checks, results interpretation and verification.

ASSESSMENT METHOD

The unit is assessed by a combination of examination and coursework.

- 70% 3 hour end of unit written examination. Four out of six questions to be attempted.
- 30% Coursework based on a finite element modelling exercise and a series of open book in-class tests.

INDICATIVE SOURCES

Background Reading

Ugural A C; Stresses in Plates and Shells; 2nd ed, McGraw Hill, 1999.

Megson, T.H.G.; Aircraft Structures for Engineering Students; 2nd ed, Edward Arnold; 1990.

Megson, T.H.G.; Linear Analysis of Thin-walled Elastic Structures; Surrey University Press; 1974.

Murray, N.W.; Introduction to the Theory of Thin Walled Structures; 2nd ed, Clarendon Press; 1986.

Jaeger, L.G.; Elementary Theory of Elastic Plates; Pergamon Press; 1964.

Lowe, P.G.; Basic Principles of Plate Theory; Surrey University Press; 1982.

Rees, D.W.A.; Mechanics of Solids and Structures; McGraw Hill; 1990.

Heyman, J.; Elements of Stress Analysis; Cambridge University Press; 1982.

Rockey, K.C. et.al.; The Finite Element Method; Granada; 1983.

Fagan, M.J.; Finite Element Analysis : Theory and Practice; Longman Scientific and Technical; 1992.

MacLeoad, I.A.; Analytical Modelling of Structural Elements; Ellis Horwood; 1990.

Clough, R.W. et. al.; Dynamics of Structures; McGraw Hill; 1975.

Woodford, C H et al.; Engineering Analysis Using PAFEC; Blackie; 1992.

Cook, R.D; Finite Element Modelling for Stress Analysis; Wiley; 1995.

Mottram, J.T. et al; Using Finite Elements in Mechanical Design; McGraw Hill; 1996.

Marshall & Nelson, Structures, Longman, 3rd Ed, 1990

Megson, T H G, Structural and Stress Analysis, Arnold, 1996

Bhatt, P, Structures, Longman, 1999