LONDON SOUTH BANK
UNIVERSITY

Unit Guide

Engineering Software 2

ECS-2-823

http://www.blackboard.lsbu.ac.uk/

Faculty of Engineering,
Science and the Built
Environment

2008-09

become what you want to be

Template version: 5

http://www.blackboard.lsbu.ac.uk/

Table of Contents

1. 10T I T =] SRS 3
2. Tt I 1= Tor]) o PPN 3
3 AIMS Of the UNit..ccc e 3
4. Learning OULCOMES. ..o iitiiiiiiee ettt e e e e e oottt e e e e e e e abbb et e e e e e e e s e annbbeeeeeaaeesaannebaneeaaaeeeaannenenes 4
4.1 Knowledge and UNAersStanding..............uuuuuuuuuuuuruuiiiiiiiiiiieiieiiesieseeeeeeeeseeeeeeeeeeseeeeeeeeeseeeeeeeeeeeeeeeee 4
A 101 =Y 1 1= Yo 00 =T BT 41 PP 4
e T e = Tor 1 o= IR 11| RPN 4
4.4 Transferable SKIllS ...ttt e e a e e e eaaaens 4
5. Assessment Of the UNIt ... 4
6. LY=o | o = o] PSRRI 5
7. Introduction to Studying the URnit............coiii e 5
7.1 Overview of the Main CONTENTooii e e e ee e e e 5
7.2 OVerview Of TYPES OF ClaSSESuuuuiiiiiaiiiiiitiiiie ettt e e e e e e e et e e e e e e e e e ennrreeeaaaens 5
7.3 Importance of Student Self-Managed Learning TimMeccooouiiiiiiiiiiieea e 6
T4 EMPIOYADIlIY....ccooiiiiiiiiiiiiii 6
8 The Programme of Teaching, Learning and ASSESSMENt............cccuuuiiiiiieiiiiiiiiiiiee e 6
9. LearNING RESOUICEScciiiiiiiiiiiiiiiii ettt 10
S I 070 (R I - (= 4 T TR 10
9.2 OPloNal MAtEHAIScceviiiiiiieiiiiieeeeeee et 10
N I PP RRRPR 11
Acknowledgement

Template version: 5 2

http://www.lsbu.ac.uk/lteu/resources/ug/ug0.html

1. UNIT DETAILS

Unit Title: Engineering Software 2
Unit Level: 2
Unit Reference Number: ECS-2-823
Credit Value: One
Student Study Hours: 144
Contact Hours: 24 hour lectures, 24 hour workshops
Private Study Hours: 4x24=96 hours
Pre-requisite Learning (If applicable): Engineering Computing or Engineering Software
1
Co-requisite Units (If applicable): None
Course(s): TeCNE BEng TC2F TC2P
Year and Semester 2008-09, Semester 1
Unit Coordinator: Shuwo Chen
UC Contact Details (Tel, Email, Room) 020 7815 7554, chensc@Isbu.ac.uk, T410
Teaching Team & Contact Details Dr Shuwo Chen, chensc@lsbu.ac.uk, T410
(If applicable):
Subject Area: Communication and Computer Network
Engineering
Summary of Assessment Method: 50% Coursework + 50% End-of-Unit Exam

2. SHORT DESCRIPTION

Engineering Software 2 is a unit for students in TeCNE in year 2. This unit introduces
the knowledge and understanding of syntaxes and semantics of programming
languages C++. The unit teaches students the intellectual skills in programming
principles and methods with Object Oriented Programming (OOP) techniques in C++.
The practical skills include the design of programs with OOP acquired in class and the
use of VC++ 6.0 for editing, compiling, linking and executing programs. After learning
this unit, students can purse other software engineering and advanced programming
subjects and use OOP techniques to solve simple software engineering problems.

HOW TO USE THE UNIT GUIDE

This Unite Guide is to help you find your way around the unit. It is to tell you
How teaching and learning is organised in this unit
What to do and when; and more importantly to give you a rounded view of the topic.

You are advised to use this unit guide

At the start of the unit to plan ahead;

Before each lecture to familiarize yourself with the content to be taught, this will
enhance your confidence and help you to concentrate effectively during the lecture;
After each lecture to check whether you have achieved the set objectives;

After each phase to monitor your progress or weakness;

Before the examination to review and consolidate you knowledge and skill learnt in this
unit.

3. AIMS OF THE UNIT

This unit is aimed to teach students design methodology and coding techniques in
implementation of engineering programs with OOP techniques in C++.

Template version: 5 3

http://www.lsbu.ac.uk/lteu/resources/ug/ug1.html
mailto:chensc@lsbu.ac.uk
mailto:chensc@lsbu.ac.uk
http://www.lsbu.ac.uk/lteu/resources/ug/ug2.html
http://www.lsbu.ac.uk/lteu/resources/ug/ug3.html

5.

LEARNING OUTCOMES
41 Knowledge and Understanding

On successful completion of this unit, the students should be able to:

» know likeness and difference of C and C++

» know likeness and difference of structured programming method and OOP
techniques

» the syntax and semantics of C++.

4.2 Intellectual Skills

Students should be able to:

work with the syntax and semantics of the language

employ general principles of engineering design and practice

use specification and design techniques

decompose problems for software solutions

understand the program design methodology using OOP techniques

4.3 Practical Skills

Students should be able to:

+ use a software development environment for editing, debugging, compiling,
linking and running programs

» design simple programs with OOP techniques to solve engineering problems
 draft program documentation

4.4 Transferable Skills
Students should be competent in:
» General programming knowledge

» Report-writing skills
» Problems solving ability

ASSESSMENT OF THE UNIT

Assessment includes one Course Work contributing 50% (consisting of a phase test
25% and a practical assignment 25%) and one closed book Examination contributing
50% in which all questions must be attempted.

5.1 Handing in Your Assignment

All assignments should be logged in to the course secretary in Room T313. The
signature of the secretary should be obtained and kept as a proof. A standard
front sheet must be used for all work submitted for assessment. Ensure that the
front sheet is securely attached to the document. All course work must be

Template version: 5

http://www.lsbu.ac.uk/lteu/resources/ug/ug4.html
http://www.lsbu.ac.uk/lteu/resources/ug/ug5.html

6.

handed in before 4.00 p.m. on or before the date given in the assignment
specification.

5.2 Plagiarism

Plagiarism is to hand in work which somebody else has done without clearly
stating a reference for it. You can take work from books or papers or programs
that you have been given as part of the unit, but all work which is not directly
your own work should be referenced so that readers can see whose work it
is and where the original work can be found. Plagiarism in assignments and
examinations will be penalised. You might work in groups in the laboratory but
separate and identifiably distinct submissions must be made by each student
unless specifically directed otherwise.

5.3 Late Submission

Assignments which are handed in after the deadline date will incur a penalty
unless a late submission form has been filled and signed. Work submitted within
one week after the deadline will be awarded a maximum mark of 40%. Work
submitted more than two weeks after the deadline awarded a zero mark.

FEEDBACK

Feedback will normally be given to students soon after the submission of their course
works. Logbooks will be marked in class towards the end of the unit. The students’
comments on the teaching organisation will be fed back as soon as possible; and the
relevant measures will be taken to satisfy the student requirements. In the case of a few
students who are weak in programming skills, the feedback to their opinions or
requirements will be enhanced.

7.

INTRODUCTION TO STUDYING THE UNIT

7.1 Overview of the Main Content

The main content include: syntaxes of C++, multiple files and data scope,

pointers and the OOP techniques governing programming. Coding practice to
enhance the knowledge above will be carried out in workshops through the
programme.

7.2 Overview of Types of Classes

Topics will be presented in a mixture of lecture presentation and course notes.
Where appropriate practical examples will be used to illustrate concepts and
software design. Workshop sheets will be provided for appropriate topics.

The teacher notes will be used in lectures and workshops through the semester.
A very practical approach is maintained with taught material and experiments to
illustrate the structure and operation of essential elements of the programming
language and to investigate the limitations and problems associated with some

Template version: 5 5

http://www.lsbu.ac.uk/lteu/resources/ug/ug6.html
http://www.lsbu.ac.uk/lteu/resources/ug/ug7.html

of the common constructs. You are encouraged to exploit opportunities to use
laboratory facilities to follow some of these as self-directed and open-ended
learning activities.

Workshop sessions support and extend the lecture material and are self paced.
It is more important that you have a very clear understanding of the fundamental
elements of programming than you struggle to keep up with more experienced
colleagues. Self help is an important element in this work and you will find that
you learn more yourself as you try to help others. The exercises move gradually
from programs that you are given to enter and run, to the need to modify these
and eventually to create your own software solutions to specified problems.

e Lectures : Two hours each week

* Workshops : Two hours each week, focusing on the use of VC++ 6.0
environment and the design of programs with OOP in C++.

7.3 Importance of Student Self-Managed Learning Time

Self-managed learning time will be demanded to support all the work on the unit.
Self-managed work must be recorded in the logbook. As well as being a
comprehensive record of your work, your logbook will be useful to you in
discussions with staff.

The Blackboard site for this unit contains a lot of information and should be
consulted regularly.

Students should use their independent learning time to work through the core
reading for this unit. Some students who are weak in mathematics will gain
additional advices from lecturers on improving their math by self-learning.

Email is likely to be particularly important for part-time students, whose only
opportunity for team meetings is over lunch on a very busy day.

7.4 Employability

Enhancing employability is an important issue this unit should not ignore. Using
the knowledge acquired in class to solve engineering problems will be stressed
through teaching. Some key issues associated to job hunting in the field of
software engineering will be advised.

8. THE PROGRAMME OF TEACHING, LEARNING
AND ASSESSMENT

This section includes lecture programme and workshop programme.

Template version: 5 6

http://www.lsbu.ac.uk/lteu/resources/ug/ug8.html

Lecture Programme

Week 1: Pointer variables

Learning Outcomes:

On completion of this section you will have the ability to
* recognise address, pointer and value of a variable
» use pointer variables to compute values.

Lecture Topics:

« address, pointer and value of a variable

« Declaration of pointer variables

* Wrong order of declaration of pointer variables

« Cancellation of pointer operators * and &

* Mathematical computations of pointer variables

Week 2: Pointer variables (cont.)

Learning Outcomes:

On completion of this section you will have the ability to

* Operate 1D arrays and 2D arrays.

» Find the address of any element of an array

+ Find the value of any element of an array with the pointer variable.

Lecture Topics:

» pointer variables used in 1D arrays.
+ pointer variables used in 2D arrays. (optional)

Week 3: Functional programming

Learning Outcomes:

On completion of this section you will have the ability to

» know difference of top-down programming method and functional programming method
» Perform complex tasks with functional programming method

» Use reference variables

Lecture Topics:

+ Review of functional programming method with a simple sample

* Methods for passing actual parameters to formal parameters.

+ Call afunctions by passing actual parameters to formal parameters

+ Reference variables

+ Call afunctions by passing actual parameters to reference as formal parameters

Week 4: Functional programming (cont.)

Learning Outcomes:

On completion of this section you will have the ability to

« Deal with issues associated to pass actual parameters to formal parameters.
+ Use arrays as parameters

+ Pass an actual array to a formal reference array

+ Use inline functions and overloaded functions in programming.

Lecture Topics:

» Passing arrays as parameters
* References as arrays

« Default parameters

* Inline functions

* Overloaded function names

+ Main()

» Call afunctions by passing actual parameter addresses to pointer variables of formal parameters

Template version: 5

Week 5: Multiple files and data scope

Learning Outcomes:

On completion of this section you will have the ability to
+ Write programs with multiple files.
* Know to edit, compile, link and execute a project containing several files.

Lecture Topics:

» Structure of a multiple file program, header file, course code files
» Project

* Compile projects

Week 6: Multiple files and data scope (cont.)

Learning Outcomes:

On completion of this section you will have the ability to
+ Identify scope of variable

« Define variables with proper data scope

» Use static and global variables

Lecture Topics:

» Data scope, data validity regions
» Program region, file region, function region and block region
+ Static variables and global variables

Week 7: Phase Test

Week 8: Conceptual OOP

Learning Outcomes:

On completion of this section you will have the ability to

+ Know difference between structured programming method and OOP techniques

» Understand OOP properties: protect data by encapsulation, enhance program power by
inheritance and save memory and time by polymorphism.

+ Use OOP to programs to solve simple problems.

Lecture Topics:

+ Structured programming method and OOP techniques

+ Class, object, member data, private:, protected: public:

* member functions, constructor.

» protect data by encapsulation, enhance program power by inheritance and save memory and
time by polymorphism.

Week 9: Conceptual OOP (cont.)

Learning Outcomes:

On completion of this section you will have the ability to
» use Inheritance to write programs

Lecture Topics:

* |Inheritance
- father class, son class.

Week 10: More programming techniques with OOP

Template version: 5

Learning Outcomes:

On completion of this section you will have the ability to
» Use polymorphism to write programs

» Use overloading techniques

» Use complex methods to deal with objects.

Lecture Topics:

* Polymorphism

» Function overloading

» Destructor

+ Some methods dealing with objects.

Week 11: More programming techniques with OOP (cont.)

Learning Outcomes:

On completion of this section you will have the ability to

» Use pointers to deal with objects and functions

+ Use constant to deal with objects and functions

» Deal with objects with methods such as arrays as objects, reference variables to call object’s
member functions, dynamic management of objects, assignment of objects, copy of objects

Lecture Topics:

+ some methods dealing with objects (cont.): arrays as objects, reference variables to call object’s
member functions, dynamic management of objects, assignment of objects, copy of objects

* pointers

+ constant

Week 12: More programming techniques with OOP (cont.) and End-of-Unit Revision

Learning Outcomes:

On completion of this section you will have the ability to
« Use friend to access protected data or functions
» Use template to realise polymorphism

Lecture Topics:

» Friend

+ Template

+ Some method dealing with member data and functions

Week 13 & 14: End-of-Unit Examination

Workshop Programme

VC++ 6.0 for editing, compiling and executing multiple file programs.
Week 1 Files: creating, saving, copying and deleting.
Programming exercises for pointer variables.

Week 2 ‘ Programming exercises for pointer variables.

Week 3 ‘ Programming exercises for functional Programming techniques

Week 4 ‘ Programming exercises for functional Programming techniques

Programming exercises for multi file programs.
Week 5 Project, header file, source codes (.cpp).

Week 6 ‘ Programming exercises for data scope

Template version: 5

Week 7 | Phase test

Programming exercises for conceptual OOP techniques:
Week 8 | Class, object, member data, member function, constructor, private:, protected:
public:.

Week 9 Programming exercises for conceptual OOP techniques:
Inheritance —father class, son class.

Week 10 Programming exercises for more programming techniques with OOP:
Overloading, destructor, some methods dealing with objects.

Week 11 Programming exercises for more programming techniques with OOP:
some methods dealing with objects (cont.), pointers, constant

Week 12 Programming exercises for more programming techniques with OOP:
Friend, template, some method dealing with member data and functions

9. LEARNING RESOURCES

There are many books on programming with OOP techniques in C++ in our library.
These books were written by authors from different fields, e.g., Software engineering,
industry, education or research, and so they are very different in perspectives from
which to introduce and analyze problems. You should choose ones suitable for you. |
recommend two books as core materials and three as optional materials in this unit
guide, but you are still advised to glance at more books to find one in favour of your
interests and tastes.

Teacher Notes by Shuwo Chen has been used for three years in teaching. These notes
are featured by introducing concepts and explaining design methods in a simple way
and step by step, and so students who are weak in computer engineering can follow up.

Another core book is recommended here is: Bell, D., The Essence of Programming
Using C++. According to my experience, this book is organised in the way that students
like to use to learn new knowledge unlike some other books with too much theoretical
comment that tends to make students lose their interests.

9.1 Core Materials

- S.Chen, Lecture notes on Engineering Software 2, ECCE, FESBE, LSBU,
2008.

- Bell, D., The Essence of Programming Using C++, Prentice-Hall, 1997.
(Chen’s comments: In spite of the advantages above, the disadvantage of this book is of less
contents on OOP techniques. Fortunately you can read the Teacher Notes by Shuwo Chen
for the more OOP techniques.)

9.2 Optional Materials
- Deitel, H., C How to Program (4™ Edition), Pearson Prentice Hall, 2004.

(Chen’s comments: this book is comprehensive as to contents, students can use it as a
‘dictionary’ to look up terms or concepts that are explained clearly in the book.)

Template version: 5 10

http://www.lsbu.ac.uk/lteu/resources/ug/ug9.html

- Harman & Jones, First Course in C++, McGraw-Hill, 1997.

Parsons, D., Object Oriented Programming with C++, DP Publications,
London, 1994.

Hubbard, Programming with C++, McGraw-Hill Shaum Outline Series, 1996.

9.3 More Relevant Materials

Most of the following books concentrate on the C++ language at the expense of
the object-oriented concepts, but | try to give a short assessment of the book
from both points of view. There are a vast number of books on C++ which | have
not included in this list [indicative prices are included in square brackets, these
change often and are unlikely to be completely up-to-date]. | have explicitly
excluded books for one or more of the following reasons:

» they are addressed to C programmers who wish to '‘convert' to C++;

» they are C++ programmers manuals with little tutorial support;

» they have almost no information about the object-oriented approach; or

» they cost over £25 [in 1997].

The books marked with ** appear to be good but you may well discover another
appropriate book by searching through libraries or bookshops.

Ameraal, L., 'C++ for Programmers', Addison-Wesley, 1991. [£17.95]

Concentrates on the language and gives little support for the object-oriented
approach. Assumes some programming knowledge, but not necessarily C.

Barclay, KA., & Gordon BJ., ‘C++ Problem Solving and Programming’, Prentice-Hall,
1994. [£19.95]

Good thorough treatment of C++ including examples of its use in object
oriented programming. Some discussion of object oriented design and
abstraction.

Bergin, J., ‘Data Abstraction: The Object Oriented Approach using C++’, McGraw-
Hill, 1994. [£22.95]

Big book with lots of examples. Takes object oriented programming
seriously. Good thorough treatment of C++. Includes disc.

Capper, DM., 'Introducing C++ for Scientists, Engineers and Mathematicians',
Springer-Verlag, 1994 . [£20.95]

Concentrates on the language and on its application to scientific and
engineering problems. Little on the object-oriented approach. No
programming knowledge assumed

* Davies, CR., 'C++ for Dummies', IDG Books, 1994. [£18.99]

Good discussions of the language and the object oriented approach.
Despite its title, it looks quite a good book.

Eckel, B., 'C++ Inside and OUT', McGraw-Hill, 1993. [£23.95]

This is a big book and looks like good value in terms of pages per £.
Thorough and extensive treatment of the language, but rather short on object
oriented approaches.

Ettinger, J., ‘Programming in C++’, Macmillan, 1994. [£14.95]

Template version: 5 11

Small, cheap book giving a number of examples, but rather short on
treatment of object oriented programming.

Flamig, B., ‘Turbo C++ Step by Step’, Wiley, 1993. [£19.95]

Thorough treatment of C++, but not a great deal on object orientation.
Contains useful information on the use of the Turbo C++ environment.

Gorlen, KE., Orlow, SM., Plexico, PS., ‘Data Abstraction and Object Oriented
Programming in C++’, Wiley, 1991. [£23.50]

Good thorough treatment of C++ with lots of examples of objects and their
use in programs, but biased towards health administration applications.

Graham, N., ‘Learning C++’, McGraw-Hill, 1991. [£20.95]

Thorough, though incomplete (perhaps to do with its age) treatment of C++.
Rather half-hearted attempt to deal with object orientation.

Hahn, B., 'C++: A Practical Introduction', NCC Blackwell, 1994. [£18.99]
Good treatment of the language but little on object oriented approaches.

*Henderson, P., ‘Object Oriented Specification and Design with C++’, Prentice- Hall,
1993. [£22.95]

Very good on object orientation and the programming language. Includes
lots of examples and exercises. Includes a disc containing an implementable
specification (prototyping) language.

Mitchell, RJ., ‘C++ Object Oriented Programming’, 1993 [£15.99]

Thorough treatment of C++ with plenty of examples, but is based on an
extended graphics case study. Good discussion of object orientation.

Neibauer, AR., 'Your First C/C++ Program', Sybex, 1994. [£23.99]

This is a very basic book which addresses both C and C++. No object
oriented techniques. Price includes a compiler (not TURBO C/C++) on disc.

*Smith, MA., 'Object Oriented Software in C++', Chapman-Hall, 1993. [£17.99]

This is clearly presented and written and contains lots of examples. There is
some general discussion of object oriented approaches, though more might
have been expected given the title.

Smith, NE., 'OOP Using Turbo C++', Wordware, 1991. [£13.95]

This is a small book with rather large print, so, even though its comparatively
cheap, there do not seem to be very many words (or pages) to the £. It
contains lots of explanation and small examples. There is some discussion
of object orientated approaches.

Schildt, H., ‘C++: The Pocket Reference’, (2nd ed.), McGraw-Hill, 1992. [£7.95]

Small and cheap, but with “all essential functions”. This is not a tutorial book
or a text book. It is a reference book for the language only. There is nothing
about the object oriented approach in general. Assumes a basic knowledge
of C and C++.

Template version: 5

12

