MODULE 5	COMPUTER HARDWARE			
CREDIT POINTS	10			
STATUS	Core			
ASSESSMENT	Continuous Assessment		50%	
	Examination		50%	
TOTAL CONTACT HOURS: 72				
Lecture: 48		Practical: 24		
Tutorial:		Other:		
TOTAL STUDENT EFFORT: 200				

Aims

This module will show you the tangible side of computer science. It will give you an understanding of the fundamental topics of the architecture and infrastructure of a modern computer system. In the course of the module you will gain a sound understanding of number systems and digital logic circuits. In addition to the above topics we will cover a foundation in computer hardware, showing the relation from the Von Neumann model to a modern system, and the function, design and identify and explain the role played by different components in a computer system. To re-enforce the theoretical aspect of the course you will also be introduced to the practical side via a series of hardware labs. In these labs you will learn the skills to deal with basic hardware issues, such as installing new hardware and identifying problems in a computer.

Learning Outcomes

Upon successful completion of this module, you should be able to:

- 1. demonstrate the ability to convert numerical data from one format to another
- 2. design and simplify logic circuits using Boolean algebra and Karnaugh maps
- 3. identify and describe the internal hardware architecture and system software of a computer and illustrate how these components function and interact
- 4. distinguish between the architecture of various processors

- 5. disassemble and reassemble a modern PC competently and install and configure new hardware on a PC while implementing health and safety procedures
- 6. identify the different devices and device drivers used in a modern PC
 7. practise fault analysis and formulate possible solutions

Indicative Content

Topic	Description
Number Systems	Binary, Octal and Hexadecimal number bases and their use. Conversion
and Computer	between bases. Data Representation: integer, character & floating
Arithmetic	point. Arithmetic: binary maths, one's complement, two complement,
	signed numbers.
Digital Logic	Logic gates and truth tables. Boolean Logic and Karnaugh maps. Basic
	logic circuits. Half and Full adder circuits. Flip-flop circuits;
Introduction to	Von-Neumann Model. Processor overview and construction. Memory:
Computer	RAM, ROM, cache.
Hardware	
I/O modules	Inputs: rs232, USB, firewire, IrDA, Bluetooth, AGP, PCI and PCI-E.
	Outputs: Monitors (CRT and LCD), printers.
Storage devices	HDD overview. HDD construction. Interleaving. RAID.
Hardware	Stripping a PC and re-assembling it. Learning the BIOS. Formatting and
practical	FDISK.