MODULE 16 PROGRAMMING PARADIGMS

CREDIT POINTS 7.5

STATUS Core

ASSESSMENT Continuous Assessment 70%
Examination 30%

TOTAL CONTACT HOURS: 72

Lecture: 36 Practical: 36

Tutorial: Other:

TOTAL STUDENT EFFORT: 150

Aims

Functional programming is a style of programming in which expressions and functions are the major
elements. This contrasts with imperative and, to a certain extent, object-oriented programming in which
commands play a major role. The notation of functional languages tends to be very simple and very
powerful—functional programs are typically shorter and simpler than imperative programs for the same
task, and can often be developed more quickly. This module is an introduction to programming and
problem-solving in a functional style. We start from scratch but we move at a brisker pace than an
introductory course. We cover all the fundamentals and see how the language can be put to work in the
design of challenging and fun applications, including music, graphics, and web-based systems. We will
see how imperative and object-oriented aspects such as commands, encapsulation, and exceptions are
addressed in a modern functional language. Functional programming is finding more and more
application in industry but, even if you don’t program in a functional language when you finish this
module, your general programming and problem-solving skills will be greatly enhanced by it. This
module will change the way you think about computing science and software development.

Learning Outcomes

Upon successful completion of this module, you will have demonstrated the ability to:

design functional programs in a systematic, well-structured manner
explain the elements of functional programming clearly, exemplifying them with simple examples
implement imperative and object-oriented notions in a functional style

read, understand, and modify existing functional programs

v A W N

develop non-trivial applications as systems of functional programs



6 implement and test your programs using a functional programming system.

Indicative Content

Topic

Description

Introduction and

What is functional programming? Relationship with imperative

programming

motivation programming. Benefits of programming in a functional style. Brief
history and case studies of successful industrial applications. How to
learn and do functional programming.

Elements of Expressions. Evaluation (lazy versus eager). Definitions. Cases. Basic

functional datatypes. Patterns. Recursion. Inductive proof. Lists.

Designing functional programs. Examples, case studies, and exercises.

Using a functional programming system. Interpretation. Compilation.

Modular
programming

Modules. Abstract datatypes. Examples: sets, dictionaries, binary search
trees. Generic programming. Commands. Exceptions.

Applications

A selection of non-trivial case studies and mini-projects, e.g. from some
of the following areas: graphics, multimedia, games, symbolic
computation, simulation, web applications.




