Course Specification

Name of Institution	Mahidol University
Campus/faculty/department	Salaya campus
	Mahidol University International College
	Science Division

1. Course Code and course title

Section 1 General Information

	(Thai)	EGCI	204	กลศาสต์วิศวกรรม
	(English)	EGCI	204	Engineering Mechanics
2.	. Number of Credits			4(4-0-8) (Lecture/Lab/Self-study)
3.	Curriculum and 3.1 Curriculu	l type of m	subjec Bachel	t lor of Engineering (Computer Engineering)
	3.2 Type of s	ubject	Engine	eering Course (Core Engineering Major)
4.	Responsible fac Dr. Ekachai (ulty mer Chaichan	nber nasiri	
5.	Trimester / year 5.1Trimester	of stud	у	This course will be offered upon request.
	5.2 Number of	of studen	its	5-40 students
6.	Pre-requisite(s)	ICNS	132	
7.	Co-requisite(s)	none		
8.	Venue of study	Mahid	ol Univ	ersity, Salaya campus
9.	Date of latest re	vision	Octobe	er 2011

1

Section 2 Goals and Objectives

1. Goal

- 1.1 Apply physics and mathematics laws to solving engineering problems.
- 1.2 Understand principles of mechanics in order to study advanced engineering courses.
- 1.3 Analyze engineering problem systematically.

2. Objective of development revision

To up-date the knowledge content of the course

Section 3 Course Management

1. Course Description

(Thai) ระบบแรงต่างๆ ผลลัพธ์ สมดุล สถิตยศาสตร์ของไหล จลนศาสตร์และจลนพลศาสตร์ของอนุภาคและ

วัตถุเกร็ง กฎการเคลื่อนที่ข้อที่สองของนิวตัน

(English) Force system; resultant; equilibrium; fluid statics; kinematics and kinetics of particles and rigid bodies; Newton's second law of motion.

Lecture	Additional Class	Laboratory/field trip/internship	Self-study		
(nours)	(hours)	(hours)	(nours)		
44 hours	-	-	88 hours		
(4 hours x 11 weeks)			(8hours x 11 weeks)		

2. Credit hours / trimester

3. Numbers of hours that the lecturer provides individual counseling and guidance 1 hour/week

Section 4 Development of Students' Learning Outcome

1. Expected outcome on students' skill and knowledge

Student will be able to apply the knowledge from lecturer and additional research with the ideas received from analysis and synthesis to set up solutions / precautions to benefit individuals and their community.

2. Teaching Methods

- Lecture
- Self-study

3. Evaluation methods

1. Morality and Ethics

3.1 Expected outcome on morality and ethics:

- 1.1.1 To be aware of values and morality, ethics, scarification and honesty.
- O 1.1.2 To process self-discipline, punctuality, self-responsibility and social responsibility
 - 1.1.3 To process leadership and supporter skills and be able to work in a team with integrity and cooperation.
 - 1.1.4 To demonstrate good listening behavior and have respect for the rights and value of others.
 - 1.1.5 To pay respect to the rule of organization and social.
 - 1.1.6 To demonstrate the ability to analyze ethical impacts of computer usage to personals, organizations and social.
- 1.1.7 To demonstrate good academic ethical behaviors.

1.2 Teaching methods:

Learning Centered Education: Emphasis on knowledge development, important skills in career development and living, encourage students to use their full potentials

- 1.2.1 Lecture
- 1.2.2 Emphasis on morality and ethics
- 1.2.3 Group discussion

1.3 **Evaluation methods:**

- 1.3.1 Written examination
- 1.3.2 Class attendance, class participation and behavior in class
- 1.3.3 On-time submission of reports and assignments and their quality

2 Knowledge development

1.2 Expected outcome on knowledge development:

- 2.1.1 To process the knowledge related to principles, theories and practice in the course
 - 2.1.2 To be able to analyze, understand and explain the computer requirements and be able to apply knowledge and skills using the appropriate tools to solve a problem.
 - 2.1.3 To be able analyze, design and install and/or evaluate computer components to meet the requirements of the users
- O 2.1.4 To have the ability to remain current in research, and pursue new knowledge and perform ability to apply the knowledge.
 - 2.1.5 To know, understand and perform eagerness to develop computer knowledge and skills continuously.
 - 2.1.6 To have a breadth knowledge in order to oversee the changes and understand the impact of new technology.
 - 2.1.7 To have a hand-on experience in software development and/or software applications.
- O 2.1.8 To demonstrate knowledge integration with other related sciences.

2.2 Teaching methods:

Learning Centered Education: Emphasis on knowledge development, important skills in career development and living, encourage students to use their full potentials

2.2.1 Lecture and in-class participation 2.2.2 Self study

2.3 Evaluation methods:

2.3.1 Written examination2.3.2 Quality of assignments

3. Intellectual development

3.1 Expected outcome on intellectual development:

- 3.1.1 To have discretionary and systematic thinking skill.
 - 3.1.2 To have the ability to search, consolidate and evaluate ideas and evidence for problem solving.
- O 3.1.3 To be able to apply knowledge and experience to analyze and creatively solve problems both in general and in academic contexts.
 - 3.1.4 To be able to apply knowledge and experience to synthesize solution and precautions

3.2 Teaching method:

- 3.2.1 Systematic problem solving examples and case studies
- 3.2.2 Self Study

3.3 Evaluation methods:

- 3.3.1 Written examination
- 3.3.2 Quality of assignments

4. Interpersonal relationship and responsibility

4.1 *Expected outcome on interpersonal relationship and responsibility:*

- 4.1.1 To perform good communication skills with various groups of people.
- 4.1.2 To be a constructive team member (in various roles).
- 4.1.3 To process the knowledge of the course to identify social problems.
- 4.1.4 To demonstrate self and team responsibility.
- O 4.1.5 To have initiative in problem solving.
 - 4.1.6 To take responsibility in a life-long learning.

4.2 Teaching methods:

- 4.2.1 Group discussion in case studies
- 4.2.2 Group discussion
- 4.2.3 Group assignment

4.3 *Evaluation methods:*

- 4.3.1 Presentation
- 4.3.2 Class attendance, class participation and behavior in class
- 4.3.3 On-time submission of reports and assignments and their quality

5. Mathematical analytical thinking, communication skills and information technology skills

5.1 *Expected outcome on mathematical analytical thinking, communication skills and information technology skills:*

- 5.1.1 To be able to select and apply existing tools for computer related work.
- 5.1.2 To possess the ability to apply information technology for data gathering, processing, interpreting and presenting information/results.
 - 5.1.3 To have the ability to communicate effectively and select appropriate methods for presentation.
- O 5.1.4 To use information technology appropriately.

5.2 Teaching methods:

- 5.1.5 Group discussion
- 5.1.6 Assignment
- 5.1.7 Self Study

5.2 Evaluation methods:

5.2.1 Written examination

- 5.2.2 Presentation with appropriate technology5.2.3 Class attendance, class participation and behavior in class5.2.4 On-time submission of reports and assignments and their quality

Section 5 Teaching and Evaluation Plans

1. Teaching plan

week	Topics	Hours		Teaching	Instructor	
		Lectu re	Lab	Self- Study	methods/multi media	
1	Introduction to engineering mechanics Forces system •2 - dimensional forces and rectangular component •2 - dimensional moments and couples	4	-	8	Lecture and exercises	Guest instructors from the Department of Computer or Mechanical Engineering, Faculty of
2	Forces system (cont.) • 3 - dimensional forces and rectangular component • 3 - dimensional moments and couples	4	-	8	Lecture and exercises	Engineering, Mahidol university
3	 Forces system (cont.) 2 and 3 - dimensional resultants 	4	-	8	Lecture and exercises	
4	Equilibrium •System isolation and the free-body diagram •2 - dimensional equilibrium conditions •3 - dimensional equilibrium conditions •Frames and machines	4	-	8	Lecture and exercises	
5	Equilibrium (cont.) • Fluid statics • Frictional phenomena	4	-	8	Lecture and exercises	

week	Topics	Hours		Teaching	Instructor	
				methods/multi		
		Lectu	Lab	Self-	media	
		re		Study		
6	Midterm Examination					Guest
	Kinematics of particles					instructors
	•Rectilinear motion				Lecture and	from the
	•Plane curvilinear motion					Department of
	•Rectangular coordinates				exercises	Computer or
						Mechanical
1	Kinematics of particles	4	-	8	Lecture and	Engineering,
	(cont.)				exercises	Faculty of Engineering
	• Normal and tangential					Mahidol
	Polar coordinates					university
	Relative motion					annverbity
	(translating axes)					
	Constrained motion of					
	connected particles					
8	Kinetics of particles	4	-	8	Lecture and	
	• Newton's second law				exercises	
	of motion				enercises	
	Equation of motion					
	Rectifinear motion					
	Kinematics of rigid bodies					
	 Plane motion 					
	Rotation					
	Absolute motion					
9	Kinematics of rigid bodies	4	_	8	Lecture and	
	(cont.)				avarcisas	
	Relative velocity				CACICISES	
	• Instantaneous center of					
	zero velocity					
10	Relative acceleration					
10	(cont)	4	-	8	Lecture and	
	Motion relative to				exercises	
	rotating axes					
	Mass moments of inertia					
	about an axis					
11	Kinetics of rigid bodies	4	_	8	Lecture and	
	• Newton's second law				evercises	
	• General equations of				CACICISUS	
	motion					
	Translation Fixed					
	 Fixed - axis rotation Conoral plane motion 					
	- General plane mouon	1	1		1	1

week	Topics	Hours			Teaching methods/multi	Instructor
		Lectu re	Lab	Self- Study	media	
	Total	44	-	88		

2. Evaluation Plan

.

Expected outcomes	Methods / activities	Week	Percentage
1.1.2, 1.1.7, 4.1.4, 4.1.5	Attendance and in class behavior	1-11	10%
1.1.2,1.1.7, 2.1.1,2.1.4, 2.1.8, 3.1.1, 3.1.3, 4.1.4, 4.1.5, 5.1.2, 5.1.4	Assignments, Report and Presentation	1-11	10%
1.1.7, 2.1.1, 2.1.8, 3.1.3	Exams	6,12	80%

Section 6 Teaching Materials and Resources

1. Texts and main documents

Engineering Mechanics (Statics and Dynamics) 6th ed. by J.L.Meriam and L.G. Kraige

Engineering Mechanics (Statics and Dynamics) 11th ed. by R.C. Hibbeler

2. Documents and important information

none

3. Documents and recommended information

none

Section 7 Evaluation and Improvement of Course Management

1. Strategies for effective course evaluation by students

- 1.1 Evaluation of peers by students
- 1.2 Student evaluation
 - 1.2.1 Course content
 - 1.2.2 Course management
 - 1.2.3 Suggestions
 - 1.2.4 Overall opinion

2. Evaluation strategies in teaching methods

- 2.1 Student evaluation
- 2.2 Presentation

3. Improvement of teaching methods

Workshop on course improvement with the participation of all instructors in the course

4. Evaluation of students' learning outcome

Analysis of students' learning outcomes using scores from class attendance, group activity and presentation.

5. Review and improvement for better outcome

Review the course before trimester starts and before each teaching period

Symbol ● represents main responsibility / Symbol O represents minor responsibility / Space represents no responsibility

These symbols will appear in Curriculum Mapping